Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data

C. D. Tekwe, R. J. Carroll, A. R. Dabney

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

MOTIVATION: Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. RESULTS: Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. AVAILABILITY: The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. CONTACT: [email protected].
Original languageEnglish (US)
Pages (from-to)1998-2003
Number of pages6
JournalBioinformatics
Volume28
Issue number15
DOIs
StatePublished - May 24 2012
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: C.D.T. was supported by a postdoctoral training grant from the National Cancer Institute (R25T - 090301). R.J.C. was supported by a grant from the National Cancer Institute (R27-CA057030). This publication is based in part on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data'. Together they form a unique fingerprint.

Cite this