Abstract
In this paper we assess the parallel efficiency issues for simulating single phase subsurface ow in porous media, where the permeability tensor contains anisotropy rotated with certain angles or severe discontinuity. Space variables are discretized using multi-points ux approximations and the pressure equations are solved by aggregation-based algebraic multigrid method. The involved issues include the domain decomposition of space discretization and coarsening, smoothing, the coarsest grid solving of multigrid solving steps. Numerical experiments exhibit that the convergence of the multigrid algorithm suffers from the parallel implementation. The linear system at the coarsest grid is solved and by various iterative methods and the experimental results show that the parallel efficiency is less attenuated when sparse approximate inverse preconditioning conjugate gradient is used.
Original language | English (US) |
---|---|
Pages (from-to) | 873-890 |
Number of pages | 18 |
Journal | International Journal of Numerical Analysis and Modeling |
Volume | 16 |
Issue number | 6 |
State | Published - Aug 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-04Acknowledged KAUST grant number(s): BAS/1/1351-01-01
Acknowledgements: The research reported in this publication was supported in part by funding from King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01.