TY - GEN
T1 - Application of machine-learning techniques for characteristic analysis of refractory materials
AU - Ijaz, Sumbel
AU - Noureen, Sadia
AU - Rehman, Bacha
AU - Zubair, Muhammad
AU - Mehmood, Muhammad Qasim
AU - Massoud, Yehia Mahmoud
N1 - KAUST Repository Item: Exported on 2022-12-21
PY - 2022/12/16
Y1 - 2022/12/16
N2 - Flat optics have become capable of achieving unprecedented functionalities through electromagnetic (EM) wave manipulation by employing the metasurfaces. The most crucial part in the design of metasurface is the selection the constitutive component i.e. the meta-atom’s material and structure so that it exhibits the precise operation as per the desired application. The unit-cell design calls for an iterative loop of simulations in order to explore the EM responses for intended operation. In this work, we have studied the absorption response of refractory materials under visible light radiations for their utilization in energy harvesting applications. The absorption response estimation using machine-learning techniques for the materials having very high melting-points, mechanical stabilities and inertness to the atmosphere has been carried out to investigate their performance in the broadband range. The presented regression models incorporate hybrid data format i.e. they simultaneously contend with 3-D and 1-D properties of various shapes of nano-resonators. The images’ feature extraction is carried out by employing Singular Value Decomposition. The trained models are potent enough to bypass the repetitive sequence of optimization involved in conventional EM solvers. Additionally, the models are capable of predicting the optimum shape along with structural dimensions of unit-cell. For forward model, the MSEs for training and testing are 1.302×10-2 and 3.269×10-2 while R2 scores are 0.9804 and 0.8764, respectively. The approach applied is so robust that, irrespective of complexity of unit-cell structure is, it serves the purpose of predicting the distinct structure with highest performance while bypassing the time- and computationally-intensive EM simulations.
AB - Flat optics have become capable of achieving unprecedented functionalities through electromagnetic (EM) wave manipulation by employing the metasurfaces. The most crucial part in the design of metasurface is the selection the constitutive component i.e. the meta-atom’s material and structure so that it exhibits the precise operation as per the desired application. The unit-cell design calls for an iterative loop of simulations in order to explore the EM responses for intended operation. In this work, we have studied the absorption response of refractory materials under visible light radiations for their utilization in energy harvesting applications. The absorption response estimation using machine-learning techniques for the materials having very high melting-points, mechanical stabilities and inertness to the atmosphere has been carried out to investigate their performance in the broadband range. The presented regression models incorporate hybrid data format i.e. they simultaneously contend with 3-D and 1-D properties of various shapes of nano-resonators. The images’ feature extraction is carried out by employing Singular Value Decomposition. The trained models are potent enough to bypass the repetitive sequence of optimization involved in conventional EM solvers. Additionally, the models are capable of predicting the optimum shape along with structural dimensions of unit-cell. For forward model, the MSEs for training and testing are 1.302×10-2 and 3.269×10-2 while R2 scores are 0.9804 and 0.8764, respectively. The approach applied is so robust that, irrespective of complexity of unit-cell structure is, it serves the purpose of predicting the distinct structure with highest performance while bypassing the time- and computationally-intensive EM simulations.
UR - http://hdl.handle.net/10754/686574
UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12313/2643946/Application-of-machine-learning-techniques-for-characteristic-analysis-of-refractory/10.1117/12.2643946.full
U2 - 10.1117/12.2643946
DO - 10.1117/12.2643946
M3 - Conference contribution
BT - Photonics for Energy II
PB - SPIE
ER -