Abstract
Fruit firmness constitutes an important textural property and is one of the key parameters for estimating ripening and shelf life, which has a major impact on commercialization. In order to decipher the mechanisms related to firmness of apples (Malus × domestica Borkh.), two-dimensional gel electrophoresis (2-DE) was used to compare the total proteome of high and low firmness phenotypes from apple hypanthia of a 'Golden Delicious' × 'Dietrich' population. A total of 36 differentially regulated protein spots were positively identified by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and then validated against the Malus expressed sequence tags (EST) database. The findings of this study indicated a lower expression of ethylene biosynthesis related proteins in the high firmness phenotype, which could be linked to the slowing down of the ripening and softening processes. The reduced accumulation of proteins involved in ethylene biosynthesis juxtaposed to the upregulation of a transposase and a GTP-binding protein in the high firmness phenotype. The results also showed higher expression of cytoskeleton proteins in the high firmness phenotype compared to the low firmness phenotype, which play a role in maintaining cell structure and possibly fruit integrity. Finally, a number of proteins involved in detoxification and defense were expressed in fruit hypanthium. This proteomic study provides a contribution towards a better understanding of regulatory networks involved in fruit hypanthium firmness and/or softening, which could be instrumental in the development of improved fruit quality. © 2012 Springer Science+Business Media, LLC.
Original language | English (US) |
---|---|
Pages (from-to) | 306-326 |
Number of pages | 21 |
Journal | Applied Biochemistry and Biotechnology |
Volume | 168 |
Issue number | 2 |
DOIs | |
State | Published - Jun 26 2012 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported by grants from the Agricultural Research Council and Technology for Human Resources for Industry Programme, South Africa. The authors wish to thank Prof. Christoph Gehring for critically reading the manuscript and the Department of Biotechnology, University of the Western Cape, South Africa for assistance with proteomics equipment used in the study.
ASJC Scopus subject areas
- Biochemistry
- Applied Microbiology and Biotechnology
- Bioengineering
- Molecular Biology
- Biotechnology
- Environmental Engineering