Anapole nanolasers for mode-locking and ultrafast pulse generation

J. S. Totero Gongora, Andrey E. Miroshnichenko, Yuri S. Kivshar, Andrea Fratalocchi

Research output: Contribution to journalArticlepeer-review

196 Scopus citations

Abstract

Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.
Original languageEnglish (US)
JournalNature Communications
Volume8
Issue number1
DOIs
StatePublished - May 31 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2016-CRG5-2995
Acknowledgements: A.F. acknowledges funding support from KAUST (Award No. OSR-2016-CRG5-2995). For the computer time, we have used the resources of the KAUST Supercomputing Laboratory and the Redragon cluster of the PRIMALIGHT group.

Fingerprint

Dive into the research topics of 'Anapole nanolasers for mode-locking and ultrafast pulse generation'. Together they form a unique fingerprint.

Cite this