Abstract
The present work is focused on the nanoreinforcement of prepreg based carbon fiber composite laminates to improve delamination resistance. Functionalized multi-walled carbon nanotubes (MWCNTs) were dispersed over the interface between prepreg layers through solvent spraying and the resulting mode I interlaminar fracture toughness was determined. For comparison, baseline samples with neat prepregs were also prepared. Results indicate that the introduction of functionalized MWCNTs can favorably affect the interlaminar fracture toughness, and the associated mechanisms of failure have been investigated. The manufacturing procedures and the interfacial reinforcing mechanism were explored by analyzing (i) the wettability between CNTs-solvent solution and prepreg surface, (ii) CNTs dispersion and (iii) the fractured surfaces through high resolution scanning electron microscopy and Raman mapping. © 2013 Elsevier Ltd.
Original language | English (US) |
---|---|
Pages (from-to) | 921-927 |
Number of pages | 7 |
Journal | Materials & Design |
Volume | 53 |
DOIs | |
State | Published - Jan 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- Mechanics of Materials
- General Materials Science
- Mechanical Engineering