Abstract
In this study, the thermodynamic analysis of energy distribution, exhaust emissions, and particulate characterization was conducted in an optical engine with an all-metal configuration. Additionally, the line-of-sight integrated imaging of combustion luminosity, and OH* chemiluminescence along with planar laser induced fluorescence of formaldehyde (HCHO-PLIF), and planar laser induced incandescence of soot (soot-PLII) were applied in the optical configuration. The experiments were conducted with conventional diesel combustion at λ = 3 (i.e., CDC), isobaric combustion at λ = 3 (i.e., Iso3), and isobaric combustion at λ = 4.2 (i.e., Iso4.2) using n-heptane fuel. Compared to Iso3 and CDC, Iso4.2 yielded higher thermal efficiency and lower heat losses; whilst the exhaust losses were exacerbeted. Isobaric combustion also resulted in lower NOx but increased soot emissions. For all operating conditions, the combustion luminosity and OH* chemiluminescence imaging showed that the signal grows and develops from the jet-axis downstream of the nozzle to the jet-wall impingement point, followed by movement towards the squish region. HCHO-PLIF showed that isobaric combustion leads to a faster transition of low-to high-temperature reactions compared to CDC. Soot-PLII showed increased in-cylinder soot distribution for isobaric combustion due to lesser charge pre-mixing time and spray-flame interaction induced by close-coupled injections.
Original language | English (US) |
---|---|
Pages (from-to) | 126859 |
Journal | Energy |
Volume | 269 |
DOIs | |
State | Published - Feb 4 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-02-06Acknowledgements: This paper is based on work supported by Saudi Aramco Research and Development Center FUELCOM3 program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and KAUST intended to address the fundamental aspects of hydrocarbon fuel combustion in engines, and develop fuel/engine design tools suitable for advanced combustion modes.
ASJC Scopus subject areas
- General Energy
- Pollution