Abstract
The classification of multivariate functional data is an important task in scientific research. Unlike point-wise data, functional data are usually classified by their shapes rather
than by their scales. We define an outlyingness matrix by extending directional outlyingness, an effective measure of the shape variation of curves that combines the direction of
outlyingness with conventional statistical depth. We propose two classifiers based on directional outlyingness and the outlyingness matrix, respectively. Our classifiers provide better performance compared with existing depth-based classifiers when applied on both univariate and multivariate functional data from simulation studies. We also test our methods on two data problems: speech recognition and gesture classification, and obtain results that are consistent with the findings from the simulated data.
Original language | English (US) |
---|---|
Pages (from-to) | 2435-2454 |
Number of pages | 20 |
Journal | Statistica Sinica |
Volume | 28 |
Issue number | 4 |
DOIs | |
State | Published - 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The authors thank the editor, the associate editor and the two referees for their constructive comments that led to a substantial improvement of the paper. The work of Wenlin Dai and Marc G. Genton was supported by King Abdullah University of Science and Technology (KAUST).