An optimized embryonic stem cell model for consistent gene expression and developmental studies: A fundamental study

Cornelia Gissel, Chris Voolstra, Michael Xavier Doss, Christoph I. Koehler, Johannes Winkler, Jürgen Hescheler, Agapios Sachinidis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


In vitro differentiation of embryonic stem (ES) cells results in generation of tissue-specific somatic cells and may represent a powerful tool for general understanding of cellular differentiation and development in vivo. Culturing of most ES cell lines requires murine embryonic fibroblasts (MEF), which may influence adventitiously the genetic differentiation program of ES cells. We compared the expression profile of key developmental genes in the MEF-independent CGR8 ES cell line and in the MEF-dependent D3 ES cell line. Using neomycin-resistant MEFs we demonstrated that MEFs are able to contaminate the D3 ES cells even after removing the MEFs. Subsequently, optimal differentiation conditions were established for the differentiation of CGR8 ES cells into various germ layer cells. Detailed gene expression studies in differentiating CGR8 cells were done by RT-PCR analysis and by microarray analysis demonstrating a general trend of the assessed genes to be expressed either in 3 days- or 10-days old embryoid bodies (EBs) when compared to undifferentiated ES cells. Subsets within the various functional gene classes were defined that are specifically up- or down-regulated in concert. Interestingly, the present results demonstrate that developmental processes toward germ layer formation are irreversible and mostly independent of the culture conditions. Notably, apoptotic and mitochondrial ribosomal genes were down- and up-regulated in 10-days old EBs, respectively, whereas compared to the 3-days old EBs whereas the activity of the extracellular signal-regulated kinase (ERK) 1/2 decreased with progressive development.This article defines a platform for ES cell differentiation and gene expression studies.

Original languageEnglish (US)
Pages (from-to)719-727
Number of pages9
JournalThrombosis and Haemostasis
Issue number4
StatePublished - Oct 2005
Externally publishedYes


  • CGR8 embryonic stem cells
  • Development
  • Gene expression
  • Microarrays

ASJC Scopus subject areas

  • Hematology


Dive into the research topics of 'An optimized embryonic stem cell model for consistent gene expression and developmental studies: A fundamental study'. Together they form a unique fingerprint.

Cite this