An Explicit Time Domain Finite Element Boundary Integral Method for Analysis of Electromagnetic Scattering

Ming Dong, Liang Chen, Lijun Jiang, Ping Li, Hakan Bagci

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

A numerical scheme, which hybridizes the element level dual field time domain finite element domain decomposition method (ELDDM) and time domain boundary integral (TDBI) method to accurately and efficiently analyze open-region transient electromagnetic scattering problems, is proposed. Element level decomposition decouples Maxwell equations on a discretization element from those on its neighboring elements using equivalent currents defined on their faces. For any element inside the computation domain, the equivalent currents are obtained from fields in the neighboring elements. For any element on the boundary of the computation domain, the equivalent currents are obtained using the fields generated by TDBI. To generate these fields, TDBI “radiates” equivalent currents on a Huygens surface enclosing the scatterer. This approach when combined with a leapfrog-type time updates results in a fully explicit numerical scheme that allows ELDDM and TDBI to use different time steps. Numerical results that demonstrate the applicability of the proposed method to concave and disconnected scatterers are presented.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Transactions on Antennas and Propagation
DOIs
StatePublished - 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-01-25

Fingerprint

Dive into the research topics of 'An Explicit Time Domain Finite Element Boundary Integral Method for Analysis of Electromagnetic Scattering'. Together they form a unique fingerprint.

Cite this