Abstract
Unconventional hydrocarbon resources mostly found in highly stressed, overpressured, and deep formations, where the rock strength and integrity are very high. When fracturing these kinds of rocks, the hydraulic fracturing operation becomes much more challenging and difficult and in some cases reaches to the maximum pumping capacity limits without generating any fracture. This reduces the operational gap to optimally place the hydraulic fractures. Current stimulation methods to reduce the fracture pressures involvement with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals. In this study, a new environment friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new method incorporates the injection of chemical-free fracturing fluid in a series of cycles with a progressive increase of the pressurization rate in each cycle. This study is carried out on different cement blocks with varying petrophysical and mechanical properties to simulate real rock types. The results showed that the new method of cyclic fracturing can reduce the breakdown pressure to 24.6% in ultra-tight rocks, 19% in tight rocks, and 14.8% in medium- to low-permeability rocks. This reduction in breakdown pressure helped to overcome the operational challenges in the field and makes the fracturing operation much greener.
Original language | English (US) |
---|---|
Journal | Journal of Energy Resources Technology, Transactions of the ASME |
Volume | 142 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2020 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-20ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Mechanical Engineering
- Geochemistry and Petrology
- Fuel Technology
- Renewable Energy, Sustainability and the Environment