Abstract
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Original language | English (US) |
---|---|
Pages (from-to) | 3992-3998 |
Number of pages | 7 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 60 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2012 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported in part by an Academic Excellence Alliance program award from the King Abdullah University of Science and Technology (KAUST) Global Collaborative Research under the title "Energy Efficient Photonic and Spintronic Devices."
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Condensed Matter Physics