Abstract
Constructing more active and durable trifunctional electrocatalysts is key for boosting overall water splitting and metal–air battery efficiency. Herein, we developed a trifunctional electrocatalyst of ultrafine Pt nanoparticles anchored on CoS2-N-doped reduced graphene oxide (Pt@CoS2-NrGO). Owing to its more Pt active sites with rapid ion/electron transport ability, the Pt@CoS2-NrGO shows excellent trifunctional activities towards HER (ƞ10 = 39 mV), OER (ƞ10 = 235 mV) ORR (E1/2 = 0.85 V vs. RHE) and water splitting device of Pt@CoS2-NrGO||Pt@CoS2-NrGO achieved cell voltage of 1.48 V at 10 mA cm−2, which is better than Pt-C||RuO2. Finally, we employed Pt@CoS2-NrGO as air cathode for zinc–air battery to display a power density of 114 mW cm-2 and durability of 55 h, outperforming than Pt-C + RuO2 based zinc–air batteries. For practical aspects, Pt@CoS2-NrGO based zinc–air batteries were connected to overall water splitting device to produce H2 and O2 gases for hydrogen fuel cell.
Original language | English (US) |
---|---|
Pages (from-to) | 120405 |
Journal | Applied Catalysis B: Environmental |
Volume | 297 |
DOIs | |
State | Published - Jun 1 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-06-16Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2020R1A2B5B01001458). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20184030202210).
ASJC Scopus subject areas
- General Environmental Science
- Catalysis
- Process Chemistry and Technology