Abstract
Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.
Original language | English (US) |
---|---|
Pages (from-to) | 201-215 |
Number of pages | 15 |
Journal | SIAM Journal on Applied Mathematics |
Volume | 72 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2012 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: This work was supported by Award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST), and by EPSRC grant EP/E019323.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.