TY - JOUR
T1 - An Approach towards Designing Logic Locking Using Shape-Perpendicular Magnetic Anisotropy-Double Layer MTJ
AU - Khan, Danial
AU - Amara, Selma
AU - Massoud, Yehia Mahmoud
N1 - KAUST Repository Item: Exported on 2023-01-23
Acknowledgements: This research received no external funding.
PY - 2023/1/17
Y1 - 2023/1/17
N2 - In recent years, discovering various vulnerabilities in the IC supply chain has raised security concerns in electronic systems. Recent research has proposed numerous attack and defense mechanisms involving various nanoelectronic devices. Spintronic devices are a viable choice among various nanoelectronic devices because of their non-volatility, ease of fabrication with a silicon substrate, randomization in space and time, etc. This work uses a shape-perpendicular magnetic anisotropy-double oxide layer magnetic tunnel junction (s-PMA DMTJ) to construct a potential logic-locking (LL) defensive mechanism. s-PMA DMTJs can be used for more realistic novel solutions of secure hardware design due to their improved thermal stability and area efficiency compared to traditional MTJs. The LL system’s critical design range and viability are investigated in this work and compared with other two-terminal MTJ designs using various circuit analysis techniques, such as Monte Carlo simulations, eye diagram analysis, transient measurement, and parametric simulations. Hamming Distance of 25%, and output corruption coverage of 100% are achieved in the investigated test circuit.
AB - In recent years, discovering various vulnerabilities in the IC supply chain has raised security concerns in electronic systems. Recent research has proposed numerous attack and defense mechanisms involving various nanoelectronic devices. Spintronic devices are a viable choice among various nanoelectronic devices because of their non-volatility, ease of fabrication with a silicon substrate, randomization in space and time, etc. This work uses a shape-perpendicular magnetic anisotropy-double oxide layer magnetic tunnel junction (s-PMA DMTJ) to construct a potential logic-locking (LL) defensive mechanism. s-PMA DMTJs can be used for more realistic novel solutions of secure hardware design due to their improved thermal stability and area efficiency compared to traditional MTJs. The LL system’s critical design range and viability are investigated in this work and compared with other two-terminal MTJ designs using various circuit analysis techniques, such as Monte Carlo simulations, eye diagram analysis, transient measurement, and parametric simulations. Hamming Distance of 25%, and output corruption coverage of 100% are achieved in the investigated test circuit.
UR - http://hdl.handle.net/10754/687226
UR - https://www.mdpi.com/2079-9292/12/3/479
U2 - 10.3390/electronics12030479
DO - 10.3390/electronics12030479
M3 - Article
SN - 2079-9292
VL - 12
SP - 479
JO - Electronics
JF - Electronics
IS - 3
ER -