An algorithm for coarsening unstructured meshes

Randolph E. Bank, Jinchao Xu

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

We develop and analyze a procedure for creating a hierarchical basis of continuous piecewise linear polynomials on an arbitrary, unstructured, nonuniform triangular mesh. Using these hierarchical basis functions, we are able to define and analyze corresponding iterative methods for solving the linear systems arising from finite element discretizations of elliptic partial differential equations. We show that such iterative methods perform as well as those developed for the usual case of structured, locally refined meshes. In particular, we show that the generalized condition numbers for such iterative methods are of order J2, where J is the number of hierarchical basis levels.
Original languageEnglish (US)
Pages (from-to)1-36
Number of pages36
JournalNumerische Mathematik
Volume73
Issue number1
DOIs
StatePublished - Jan 1 1996
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An algorithm for coarsening unstructured meshes'. Together they form a unique fingerprint.

Cite this