Abstract
In this work, we develop a method to generate infinite high-resolution images with diverse and complex content. It is based on a perfectly equivariant patch-wise generator with synchronous interpolations in the image and latent spaces. Latent codes, when sampled, are positioned on the coordinate grid, and each pixel is computed from an interpolation of the neighboring codes. We modify the AdaIN mechanism to work in such a setup and train a GAN model to generate images positioned between any two latent vectors. At test time, this allows for generating infinitely large images of diverse scenes that transition naturally from one into another. Apart from that, we introduce LHQ: a new dataset of 90k high-resolution nature landscapes. We test the approach on LHQ, LSUN Tower and LSUN Bridge and outperform the baselines by at least 4 times in terms of quality and diversity of the produced infinite images. The project website is located at https://universome.github.io/alis.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 14124-14133 |
Number of pages | 10 |
ISBN (Electronic) | 9781665428125 |
DOIs | |
State | Published - 2021 |
Event | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada Duration: Oct 11 2021 → Oct 17 2021 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
ISSN (Print) | 1550-5499 |
Conference
Conference | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 10/11/21 → 10/17/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition