Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex

Andreas Naschberger, Laura Mosebach, Victor Tobiasson, Sebastian Kuhlgert, Martin Scholz, Annemarie Perez-Boerema, Thi Thu Hoai Ho, André Vidal-Meireles, Yuichiro Takahashi, Michael Hippler, Alexey Amunts

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer, comprising 40 protein subunits with 118 transmembrane helices that provide scaffold for 568 pigments. Cryogenic electron microscopy identified that the absence of PsaH and Lhca2 gives rise to a head-to-head relative orientation of the PSI–light-harvesting complex I monomers in a way that is essentially different from the oligomer formation in cyanobacteria. The light-harvesting protein Lhca9 is the key element for mediating this dimerization. The interface between the monomers is lacking PsaH and thus partially overlaps with the surface area that would bind one of the light-harvesting complex II complexes in state transitions. We also define the most accurate available PSI–light-harvesting complex I model at 2.3 Å resolution, including a flexibly bound electron donor plastocyanin, and assign correct identities and orientations to all the pigments, as well as 621 water molecules that affect energy transfer pathways.
Original languageEnglish (US)
Pages (from-to)1191-1201
Number of pages11
JournalNature Plants
Issue number10
StatePublished - Oct 1 2022
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15


Dive into the research topics of 'Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex'. Together they form a unique fingerprint.

Cite this