Abstract
Discovering the creative potentials of a random signal to various artistic expressions in aesthetic and conceptual richness is a ground for the recent success of generative machine learning as a way of art creation. To understand the new artistic medium better, in this work, we comprehensively analyze AI-generated art within the context of human art heritage using our dataset, "ArtConstellation,"comprising annotations for 6,000 WikiArt and 3,200 AI-generated artworks. After training various generative models, we compare the produced art samples with WikiArt data using the last hidden layer of a deep-CNN trained for style classification. By interpreting neural representations with important artistic concepts like Wölfflin's principles, we find that AI-generated artworks align with modern period art concepts (1800 - 2000). Out-Of-Distribution (OOD) and In-Distribution (ID) detection in CLIP space reveal that AI-generated art is ID to human art with landscapes and geometric abstract figures but OOD with deformed and twisted figures, showcasing unique characteristics. A human survey on emotional experience indicates color composition and familiar subjects as key factors in likability and emotions. We introduce our methodologies and dataset, "ArtNeural-Constellation,"as a framework for contrasting human and AI-generated art. Code and data are available here.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
Publisher | IEEE Computer Society |
Pages | 7470-7478 |
Number of pages | 9 |
ISBN (Electronic) | 9798350365474 |
DOIs | |
State | Published - 2024 |
Event | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States Duration: Jun 16 2024 → Jun 22 2024 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 06/16/24 → 06/22/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering