Ag-Cu Embedded SDS Nanoparticles for Efficient Removal of Toxic Organic Dyes from Water Medium

Faisal Ali, Saira Mehmood, Adnan Ashraf, Aimon Saleem, Umer Younas, Awais Ahmad, Muhammad Pervaiz Bhatti, Gaber E. Eldesoky, Ahmed Muteb Aljuwayid, Mohamed A. Habila, Awais Bokhari, Muhammad Mubashir, Lai Fatt Chuah, Jun Wei Roy Chong, Pau Loke Show

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Remediation of industrial water pollution is a trending subject to date for the researchers around the globe, due to its detrimental effects on human life as well as aquatic life. Azo dyes are the largest industrial water polluters in respect of volume while anthraquinone the second largest. Therefore, humongous considerations are being enumerated for the removal and decolorization of azo (AZ) dyestuff; however, for anthraquinone (AQ) dyes, these efforts are considerably minimal; although the later one poses a greater threat to environmental contamination, because of their reinforced structure. The current study is an effort toward this foremost issue. Chemical reduction synthesis of silver-copper (Ag-Cu) bimetallic nanoparticles (BNPs) was achieved using NaBH4 as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. Characterization and morphological evaluation indicates two distinctive UV/vis absorption peaks for Ag and Cu. XRD studies for nanocomposite showed crystallite size of 8.96014 nm having an FCC structure. SEM with EDX confirmed the particle sizes of BNPs and SDS to be 17.14 and 114.56 nm, respectively. Potential catalytic activity and kinetic parameters of Ag-Cu BNPs@SDS were monitored against Methylene Blue (MB), Methyl Orange (MO), and eosin-y (EY). The percentage degradation recorded for the nanocatalyst against MO, MB, and EY was 95.21%, 98.57%, and 96.65%, respectively. This method can be adopted for the removal of multiple dyes from industrial effluent on a larger scale.
Original languageEnglish (US)
Pages (from-to)4765-4777
Number of pages13
JournalIndustrial and Engineering Chemistry Research
Volume62
Issue number11
DOIs
StatePublished - Mar 22 2023
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-20

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Chemistry
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Ag-Cu Embedded SDS Nanoparticles for Efficient Removal of Toxic Organic Dyes from Water Medium'. Together they form a unique fingerprint.

Cite this