Abstract
In most existing learning systems, images are typically viewed as 2D pixel arrays. However, in another paradigm gaining popularity, a 2D image is represented as an implicit neural representation (INR) - an MLP that predicts an RGB pixel value given its (x, y) coordinate. In this paper, we propose two novel architectural techniques for building INR-based image decoders: factorized multiplicative modulation and multi-scale INRs, and use them to build a state-of-the-art continuous image GAN. Previous attempts to adapt INRs for image generation were limited to MNIST-like datasets and do not scale to complex real-world data. Our proposed INR-GAN architecture improves the performance of continuous image generators by several times, greatly reducing the gap between continuous image GANs and pixel-based ones. Apart from that, we explore several exciting properties of the INR-based decoders, like out-of-the-box superresolution, meaningful image-space interpolation, accelerated inference of low-resolution images, an ability to extrapolate outside of image boundaries, and strong geometric prior. The project page is located at https://universome.github.io/inr-gan.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
Publisher | IEEE Computer Society |
Pages | 10748-10759 |
Number of pages | 12 |
ISBN (Electronic) | 9781665445092 |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States Duration: Jun 19 2021 → Jun 25 2021 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 06/19/21 → 06/25/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition