Abstract
Utilization of CO2 as feedstock to produce fine chemicals and renewable fuels is a highly promising field, which presents unique challenges in its implementation at scale. Heterogeneous catalysis with its simple operation and industrial compatibility can be an effective means of achieving this challenging task. This review summarizes the current developments in heterogeneous thermal catalysis for the production of carbon monoxide, alcohols, and hydrocarbons from CO2. A detailed discussion is provided regarding structure−activity correlations between the catalyst surface and intermediate species which can aid in the rational design of future generation catalysts. Effects of active metal components, catalyst supports, and promoters are discussed in each section, which will guide researchers to synthesize new catalysts with improved selectivity and stability. Additionally, a brief overview regarding process design considerations has been provided. Future research directions are proposed with special emphasis on the application scope of new catalytic materials and possible approaches to increase catalyst performance.
Original language | English (US) |
---|---|
Pages (from-to) | 14147-14185 |
Number of pages | 39 |
Journal | ACS Catalysis |
DOIs | |
State | Published - Nov 20 2020 |