Advances in Microbiome Research for Animal Health: Annual Review of Animal Biosciences

Raquel S. Peixoto, Derek M. Harkins, Karen E. Nelson

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Host-associated microbiomes contribute in many ways to the homeostasis of the metaorganism. The microbiome's contributions range from helping to provide nutrition and aiding growth, development, and behavior to protecting against pathogens and toxic compounds. Here we summarize the current knowledge of the diversity and importance of the microbiome to animals, using representative examples of wild and domesticated species. We demonstrate how the beneficial ecological roles of animal-associated microbiomes can be generally grouped into well-defined main categories and how microbe-based alternative treatments can be applied to mitigate problems for both economic and conservation purposes and to provide crucial knowledge about host-microbiota symbiotic interactions. We suggest a Customized Combination of Microbial-Based Therapies to promote animal health and contribute to the practice of sustainable husbandry. We also discuss the ecological connections and threats associated with animal biodiversity loss, microorganism extinction, and emerging diseases, such as the COVID-19 pandemic. © 2021 Annual Reviews Inc.. All rights reserved.
Original languageEnglish (US)
Pages (from-to)289-311
Number of pages23
JournalAnnu. Rev. Anim. Biosci.
Volume9
Issue number1
DOIs
StatePublished - Feb 16 2021

Bibliographical note

Export Date: 5 May 2021

References: Qu, A, Brulc, JM, Wilson, MK, Law, BF, Theoret, JR, Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome (2008) PLOS ONE, 3 (8), p. e2945; Ley, RE, Hamady, M, Lozupone, C, Turnbaugh, PJ, Ramey, RR, Evolution of mammals and their gut microbes (2008) Science, 320 (5883), pp. 1647-1651; Tamburini, S, Shen, N, Wu, HC, Clemente, JC., Themicrobiome in early life: implications for health outcomes (2016) Nat.Med, 22 (7), pp. 713-722; Lewis, Z, Lizé, A., Insect behaviour and the microbiome (2015) Curr. Opin. Insect Sci, 9, pp. 86-90; Zhu, L, Wu, Q, Dai, J, Zhang, S, Wei, F., Evidence of cellulose metabolism by the giant panda gut microbiome (2011) PNAS, 108 (43), pp. 17714-17719; Malacrinò, A., Meta-omics tools in the world of insect-microorganism interactions (2018) Biology, 7 (4), p. 50; Pope, PB, Denman, SE, Jones, M, Tringe, SG, Barry, K, Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores (2010) PNAS, 107 (33), pp. 14793-14798; Shiffman, ME, Soo, RM, Dennis, PG, Morrison, M, Tyson, GW, Hugenholtz, P., Gene and genomecentric analyses of koala and wombat fecal microbiomes point to metabolic specialization for digestion (2017) PeerJ, 5, p. e4075; Ezenwa, VO, Gerardo, NM, Inouye, DW, Medina, M, Xavier, JB., Animal behavior and the microbiome (2012) Science, 338 (6104), pp. 198-199; Bosch, TCG, McFall-Ngai, MJ., Metaorganisms as the new frontier (2011) Zoology, 114 (4), pp. 185-190; Woodhams, DC, Bletz, MC, Becker, CG, Bender, HA, Buitrago-Rosas, D, Publisher correction: Host-Associated microbiomes are predicted by immune system complexity and climate (2020) Genome Biol, 21, p. 40; Bang, C, Dagan, T, Deines, P, Dubilier, N, Duschl, WJ, Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation? (2018) Zoology, 127, pp. 1-19; Vega Thurber, R, Willner-Hall, D, Rodriguez-Mueller, B, Desnues, C, Edwards, RA, Metagenomic analysis of stressed coral holobionts (2009) Environ.Microbiol, 11 (8), pp. 2148-2163; Vega Thurber, RL, Barott, KL, Hall, D, Liu, H, Rodriguez-Mueller, B, Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa (2008) PNAS, 105 (47), pp. 18413-18418; Bourne, D, Iida, Y, Uthicke, S, Smith-Keune, C., Changes in coral-Associated microbial communities during a bleaching event (2008) ISME J, 2 (4), pp. 350-363; Vuong, HE, Yano, JM, Fung, TC, Hsiao, EY., Themicrobiome and host behavior (2017) Annu. Rev. Neurosci, 40, pp. 21-49; Moeller, AH, Foerster, S, Wilson, ML, Pusey, AE, Hahn, BH, Ochman, H., Social behavior shapes the chimpanzee pan-microbiome (2016) Sci. Adv, 2 (1), p. e1500997; Boettcher, KJ, Ruby, EG, McFall-Ngai, MJ., Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm (1996) J. Comp. Physiol. A, 179, pp. 65-73; Hosokawa, T, Kikuchi, Y, Shimada, M, Fukatsu, T., Symbiont acquisition alters behaviour of stinkbug nymphs (2008) Biol. Lett, 4 (1), pp. 45-48; Duarte, GAS, Villela, HDM, Deocleciano, M, Silva, D, Barno, A, Heat waves are a major threat to turbid coral reefs in Brazil (2020) Front. Mar. Sci, 7, p. 179; Hughes, TP, Kerry, JT, Baird, AH, Connolly, SR, Chase, TJ, Global warming impairs stock? recruitment dynamics of corals (2019) Nature, 568 (7752), pp. 387-390; North, AC, Hodgson, DJ, Price, SJ, Griffiths, AGF., Anthropogenic and ecological drivers of amphibian disease (ranavirosis) (2015) PLOS ONE, 10 (6), p. e0127037; Sánchez-Bayo, F, Wyckhuys, KAG., Worldwide decline of the entomofauna: A review of its drivers (2019) Biol. Conserv, 232, pp. 8-27; O?Shea, TJ, Cryan, PM, Hayman, DTS, Plowright, RK, Streicker, DG., Multiple mortality events in bats: A global review (2016) Mammal. Rev, 46 (3), pp. 175-190; Watkinson, AR, Gill, JA, Hulme, M., Flying in the face of climate change: A review of climate change, past, present and future (2004) Ibis, 146, pp. 4-10. , (Suppl. 1); Peixoto, RS, Rosado, PM, Leite, DCA, Rosado, AS, Bourne, DG., Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience (2017) Front. Microbiol, 8, p. 341; Wilkins, LGE, Leray, M, O?Dea, A, Yuen, B, Peixoto, RS, Host-Associated microbiomes drive structure and function of marine ecosystems (2019) PLOS Biol, 17 (11), p. e3000533; Egan, S, Gardiner, M., Microbial dysbiosis: rethinking disease inmarine ecosystems (2016) Front. Microbiol, 7, p. 991; Jiménez, RR, Sommer, S., The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation (2017) Biodivers. Conserv, 26 (4), pp. 763-786; Sweet, MJ, Bulling, MT., On the importance of the microbiome and pathobiome in coral health and disease (2017) Front. Mar. Sci, 4, p. 2261; Huws, SA, Creevey, CJ, Oyama, LB, Mizrahi, I, Denman, SE, Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future (2018) Front. Microbiol, 9, p. 2161; MacHugh, DE, Bradley, DG., Livestock genetic origins: Goats buck the trend (2001) PNAS, 98 (10), pp. 5382-5384; Lewis, IM, Samatar, SS., (1961) A Pastoral Democracy: A Study of Pastoralism and Politics Among the Northern Somali of the Horn of Africa, , 1999, Classics Afr. Anthropol.Mönster, Ger.: LIT Verlag; Sun, H-Z, Zhou, M, Wang, O, Chen, Y, Liu, J-X, Guan, LL., Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows (2020) Bioinformatics, 36 (8), pp. 2530-2537; de Freitas, AS, de David, DB, Takagaki, BM, Roesch, LFW., Microbial patterns in rumen are associated with gain of weight in beef cattle (2020) Antonie Van Leeuwenhoek, 113 (9), pp. 1299-1312; Alipour, MJ, Jalanka, J, Pessa-Morikawa, T, Kokkonen, T, Satokari, R, The composition of the perinatal intestinal microbiota in cattle (2018) Sci. Rep, 8 (1), p. 10437; Han, X, Yang, Y, Yan, H, Wang, X, Qu, L, Chen, Y., Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing (2015) PLOS ONE, 10 (2), p. e0117811; Wang, L, Xu, Q, Kong, F, Yang, Y, Wu, D, Exploring the goat rumen microbiome from seven days to two years (2016) PLOS ONE, 11 (5), p. e0154354; Koch, RM, Swiger, LA, Chambers, D, Gregory, KE., Efficiency of feed use in beef cattle (1963) J. Anim. Sci, 22 (2), pp. 486-494; Li, F, Guan, LL., Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle (2017) Appl. Environ.Microbiol, 83 (9), pp. e00061-17; Lima, J, Auffret, MD, Stewart, RD, Dewhurst, RJ, Duthie, C-A, Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle (2019) Front. Genet, 10, p. 701; Patil, RD, Ellison, MJ, Wolff, SM, Shearer, C, Wright, AM, Poor feed efficiency in sheep is associated with several structural abnormalities in the community metabolic network of their ruminal microbes (2018) J. Anim. Sci, 96 (6), pp. 2113-2124; Metzler-Zebeli, BU, Lawlor, PG, Magowan, E, Zebeli, Q., Interactions between metabolically active bacteria and host gene expression at the cecal mucosa in pigs of diverging feed efficiency (2018) J. Anim. Sci, 96 (6), pp. 2249-2264; Attwood, GT, Wakelin, SA, Leahy, SC, Rowe, S, Clarke, S, Applications of the soil, plant and rumen microbiomes in pastoral agriculture (2019) Front Nutr, 6, p. 107; Wallace, RJ, Snelling, TJ, McCartney, CA, Tapio, I, Strozzi, F., Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism (2017) Genet. Sel. Evol, 49, p. 9; Seshadri, R, Leahy, SC, Attwood, GT, Teh, KH, Lambie, SC, Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection (2018) Nat. Biotechnol, 36 (4), pp. 359-367; Wallace, RJ, Sasson, G, Garnsworthy, PC, Tapio, I, Gregson, E, A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions (2019) Sci. Adv, 5 (7), p. eaav8391; Andersen, TO, Kunath, BJ, Hagen, LH, Arntzen, MØ, Pope, PB., Rumen metaproteomics: closer to linking rumen microbial function to animal productivity traits (2020) Methods, , press; Denman, SE, Morgavi, DP, McSweeney, CS., Review: The application of omics to rumen microbiota function (2018) Animal, 12, pp. s233-s245. , (Suppl. 2); Wang, X, Tsai, T, Deng, F, Wei, X, Chai, J, Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria (2019) Microbiome, 7, p. 109; Xiao, L, Estellé, J, Kiilerich, P, Ramayo-Caldas, Y, Xia, Z, A reference gene catalogue of the pig gut microbiome (2016) Nat.Microbiol, 1, p. 16161; Maltecca, C, Bergamaschi, M, Tiezzi, F., The interaction between microbiome and pig efficiency: A review (2020) J. Anim. Breed. Genet, 137 (1), pp. 4-13; Quan, J, Wu, Z, Ye, Y, Peng, L, Wu, J, Metagenomic characterization of intestinal regions in pigs with contrasting feed efficiency (2020) Front. Microbiol, 11, p. 32; Wang, W, Hu, H, Zijlstra, RT, Zheng, J, Gänzle, MG., Metagenomic reconstructions of gutmicrobial metabolism in weanling pigs (2019) Microbiome, 7, p. 48; Guevarra, RB, Lee, JH, Lee, SH, Seok, M-J, Kim, DW, Piglet gut microbial shifts early in life: causes and effects (2019) J. Anim. Sci. Biotechnol, 10, p. 1; Joyce, A, McCarthy, CGP, Murphy, S, Walsh, F., Antibiotic resistomes of healthy pig faecal metagenomes (2019) Microb. Genom, 5 (5), p. e000272; Wang, C, Li, P, Yan, Q, Chen, L, Li, T, Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China (2019) mSystems, 4, pp. e00206-e00219; Xiao, Y, Xiang, Y, Zhou, W, Chen, J, Li, K, Yang, H., Microbial community mapping in intestinal tract of broiler chicken (2017) Poult. Sci, 96 (5), pp. 1387-1393; Wei, S, Morrison, M, Yu, Z., Bacterial census of poultry intestinal microbiome (2013) Poult. Sci, 92 (3), pp. 671-683; Clavijo, V, Flórez, MJV., The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review (2018) Poult. Sci, 97 (3), pp. 1006-1021; Oakley, BB, Lillehoj, HS, Kogut, MH, Kim, WK, Maurer, JJ, The chicken gastrointestinal microbiome (2014) FEMS Microbiol. Lett, 360 (2), pp. 100-112; Wilkinson, TJ, Cowan, AA, Vallin, HE, Onime, LA, Oyama, LB, Characterization of the microbiome along the gastrointestinal tract of growing turkeys (2017) Front. Microbiol, 8, p. 1089; Taylor, KJM, Ngunjiri, JM, Abundo, MC, Jang, H, Elaish, M, Respiratory and gut microbiota in commercial turkey flocks with disparate weight gain trajectories display differential compositional dynamics (2020) Appl. Environ.Microbiol, 86 (12), pp. e00431-20; Elokil, AA, Abouelezz, KFM, Ahmad, HI, Pan, Y, Li, S., Investigation of the impacts of antibiotic exposure on the diversity of the gut microbiota in chicks (2020) Animals, 10 (5), p. 896; Zilhão, J, Angelucci, DE, Igreja, MA, Arnold, LJ, Badal, E, Last interglacial Iberian Neandertals as fisher-hunter-gatherers (2020) Science, 367 (6485), p. eaaz7943; O?Connor, S, Ono, R, Clarkson, C., Pelagic fishing at 42, 000 years before the present and the maritime skills of modern humans (2011) Science, 334 (6059), pp. 1117-1121; Smith, A, McNiven, IJ, Rose, D, Brown, S, Johnston, C, Crocker, S., Indigenous knowledge and resource management as world heritage values: Budj Bim Cultural Landscape, Australia (2019) Archaeologies, 15 (2), pp. 285-313; Wettenhall, G., (2010) The People of Budj Bim: Engineers of Aquaculture, Builders of Stone House Settlements and Warriors Defending Country, , Mollongghip, Aust.: em Press; de Bruijn, I, Liu, Y, Wiegertjes, GF, Raaijmakers, JM., Exploring fish microbial communities to mitigate emerging diseases in aquaculture (2018) FEMS Microbiol. Ecol, 94 (1), p. fix161; Talwar, C, Nagar, S, Lal, R, Negi, RK., Fish gut microbiome: current approaches and future perspectives (2018) Indian J. Microbiol, 58 (4), pp. 397-414; Baker-Austin, C, Oliver, JD., Vibrio vulnificus: new insights into a deadly opportunistic pathogen (2018) Environ.Microbiol, 20 (2), pp. 423-430; Yeh, H, Skubel, SA, Patel, H, Shi, DC, Bushek, D, Chikindas, ML., From farm to fingers: An exploration of probiotics for oysters, from production to human consumption (2020) Probiotics Antimicrob. Proteins, 12 (2), pp. 351-364; Dubé, CE, Ky, C-L, Planes, S., Microbiome of the black-lipped pearl oyster, a multi-Tissue description with functional profiling (2019) Front. Microbiol, 10, p. 1548; Coelho, LP, Kultima, JR, Costea, PI, Fournier, C, Pan, Y, Similarity of the dog and human gut microbiomes in gene content and response to diet (2018) Microbiome, 6, p. 72; Swanson, KS, Dowd, SE, Suchodolski, JS, Middelbos, IS, Vester, BM, Phylogenetic and genecentric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice (2011) ISME J, 5 (4), pp. 639-649; Wallis, C, Marshall, M, Colyer, A, O?Flynn, C, Deusch, O, Harris, S., A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs (2015) Vet. Microbiol, 181 (3?4), pp. 271-282; Ruparell, A, Inui, T, Staunton, R, Wallis, C, Deusch, O, Holcombe, LJ., The canine oral microbiome: variation in bacterial populations across different niches (2020) BMC Microbiol, 20, p. 42; Tun, HM, Brar, MS, Khin, N, Jun, L, Hui, RK-H, Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing (2012) J. Microbiol. Methods, 88 (3), pp. 369-376; Lyu, Y, Su, C, Verbrugghe, A, Van de Wiele, T, Martos Martinez-Caja, A, Hesta, M., Past, present, and future of gastrointestinal microbiota research in cats (2020) Front. Microbiol, 11, p. 1661; Stud, Equine, (2019) Breaking down the $122 billion economic impact of the United States equine industry, , https://post.edu/blog/breaking-down-The-122-billion-economicimpact-of-The-united-states-equine-industry-2/, Post University Blog, Sept. 27; Husso, A, Jalanka, J, Alipour, MJ, Huhti, P, Kareskoski, M, The composition of the perinatal intestinal microbiota in horse (2020) Sci. Rep, 10, p. 441; Jiménez, E, Marín, ML, Martín, R, Odriozola, JM, Olivares, M, Is meconium from healthy newborns actually sterile? (2008) Res. Microbiol, 159 (3), pp. 187-193; Collado, MC, Rautava, S, Aakko, J, Isolauri, E, Salminen, S., Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid (2016) Sci. Rep, 6, p. 23129; Aagaard, K, Ma, J, Antony, KM, Ganu, R, Petrosino, J, Versalovic, J., The placenta harbors a unique microbiome (2014) Sci. Transl.Med, 6, p. 237ra65; Gao, H, Chi, X, Qin, W, Wang, L, Song, P, Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass (Equus kiang) (2019) J. Appl.Microbiol, 126 (6), pp. 1869-1878; Williams, CL, Caraballo-Rodríguez, AM, Allaband, C, Zarrinpar, A, Knight, R, Gauglitz, JM., Wildlife-microbiome interactions and disease: exploring opportunities for disease mitigation across ecological scales (2018) Drug Discov. Today, 28, pp. 105-115; Trevelline, BK, Fontaine, SS, Hartup, BK, Kohl, KD., Conservation biology needs a microbial renaissance: A call for the consideration of host-Associated microbiota in wildlife management practices (2019) Proc. Biol. Sci, 286 (1895), p. 20182448; Fisher, MC, Garner, TWJ., Chytrid fungi and global amphibian declines (2020) Nat. Rev. Microbiol, 18 (6), pp. 332-343; Schmeller, DS, Courchamp, F, Killeen, G., Biodiversity loss, emerging pathogens and human health risks (2020) Biodivers. Conserv, 29, pp. 3095-3102; Cardinale, BJ, Emmett Duffy, J, Gonzalez, A, Hooper, DU, Perrings, C, Correction: corrigendum: biodiversity loss and its impact on humanity (2012) Nature, 489, p. 326; Woolhouse, MEJ., Population biology of emerging and re-emerging pathogens (2002) Trends Microbiol, 10 (10), pp. S3-S7; Delwart, E., Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development (2012) Curr. Opin. Virol, 2 (3), pp. 344-352; Hasle, G., Transport of ixodid ticks and tick-borne pathogens by migratory birds (2013) Front. Cell. Infect. Microbiol, 3, p. 48; Di Marco, M, Baker, ML, Daszak, P, De Barro, P, Eskew, EA, Opinion: Sustainable development must account for pandemic risk (2020) PNAS, 117 (8), pp. 3888-3892; Grogan, LF, Berger, L, Rose, K, Grillo, V, Cashins, SD, Skerratt, LF., Surveillance for emerging biodiversity diseases of wildlife (2014) PLOS Pathog, 10 (5), p. e1004015; Lutz, HL, Jackson, EW, Webala, PW, Babyesiza, WS, Kerbis Peterhans, JC, Ecology and host identity outweigh evolutionary history in shaping the bat microbiome (2019) mSystems, 4 (6), pp. e00511-e00519; Song, SJ, Sanders, JG, Delsuc, F, Metcalf, J, Amato, K, Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats (2020) mBio, 11 (1), pp. e02901-e02919; Roberts, CM, McClean, CJ, Veron, JEN, Hawkins, JP, Allen, GR, Marine biodiversity hotspots and conservation priorities for tropical reefs (2002) Science, 295 (5558), pp. 1280-1284; Sebens, KP., Biodiversity of coral reefs: What are we losing and why? (1994) Am. Zool, 34 (1), pp. 115-133; Reaka-Kudla, ML., Crustaceans (2001) Encyclopedia of Biodiversity, pp. 915-943. , ed.SA Levin, Cambridge, MA: Academic; O?Neil, JM, Capone, DG., Nitrogen cycling in coral reef environments (2008) Nitrogen in the Marine Environment, pp. 949-989. , ed. DG Capone, DA Bronk, MR Mulholland, EJ Carpenter, Cambridge, MA: Academic. 2nd ed; Hatcher, PE., Seasonal and age-related variation in the needle quality of five conifer species (1990) Oecologia, 85 (2), pp. 200-212; Raina, J-B, Tapiolas, D, Willis, BL, Bourne, DG., Coral-Associated bacteria and their role in the biogeochemical cycling of sulfur (2009) Appl. Environ.Microbiol, 75 (11), pp. 3492-3501; Moberg, F, Folke, C., Ecological goods and services of coral reef ecosystems (1999) Ecol. Econ, 29 (2), pp. 215-233; Haas, AF, Fairoz, MFM, Kelly, LW, Nelson, CE, Dinsdale, EA, Globalmicrobialization of coral reefs (2016) Nat.Microbiol, 1 (6), p. 16042; Santos, HF, Carmo, FL, Duarte, G, Dini-Andreote, F, Castro, CB, Climate change affects key nitrogen-fixing bacterial populations on coral reefs (2014) ISME J, 8 (11), pp. 2272-2279; Ainsworth, TD, Krause, L, Bridge, T, Torda, G, Raina, J-B, The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts (2015) ISME J, 9, pp. 2261-2274; Santos, HF, Duarte, GAS, da Costa Rachid, CTC, Chaloub, RM, Calderon, EN, Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota (2015) Sci. Rep, 5, p. 18268; Glasl, B, Webster, NS, Bourne, DG., Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems (2017) Mar. Biol, 164, p. 91; Ahmed, HI, Herrera, M, Liew, YJ, Aranda, M., Long-Term temperature stress in the coral model Aiptasia supports the "Anna Karenina principle" for bacterial microbiomes (2019) Front. Microbiol, 10 (1709), p. 975; van Oppen, MJH, Blackall, LL., Coral microbiome dynamics, functions and design in a changing world (2019) Nat. Rev.Microbiol, 17 (9), pp. 557-567; (2018) Whale and dolphin species guide, , https://us.whales.org/whales-dolphins/species-guide/, Whale Dolphin Conserv. Guide, Whale Dolphin Conserv., Plymouth, MA; Van Bonn, WG., (2014) Fowler?s Zoo and Wild Animal Medicine, 8. , St. Louis, MO: Elsevier Suanders. eBook ed; Bik, EM, Costello, EK, Switzer, AD, Callahan, BJ, Holmes, SP, Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea (2016) Nat. Commun, 7, p. 10516; Loudon, AH, Kurtz, A, Esposito, E, Umile, TP, Minbiole, KPC, Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment (2020) FEMS Microbiol. Ecol, 96 (10), p. fiaa168; Kruger, A., Frog skin microbiota vary with host species and environment but not chytrid infection (2020) Front. Microbiol, 11, p. 1330; Jiménez, RR, Alvarado, G, Estrella, J, Sommer, S., Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians (2019) Front. Microbiol, 10, p. 2060; Douglas, AJ, Hug, LA, Katzenback, BA., Composition of the North American wood frog (Rana sylvatica) bacterial skin microbiome and seasonal variation in community structure (2020) Microb. Ecol, , http://dx.doi.org/10.1007/s00248-020-01550-5; Walke, JB, Belden, LK., Harnessing the microbiome to prevent fungal infections: lessons from amphibians (2016) PLOS Pathog, 12 (9), p. e1005796; Amato, KR, Yeoman, CJ, Cerda, G, Schmitt, CA, Cramer, JD, Variable responses of human and non-human primate gut microbiomes to aWestern diet (2015) Microbiome, 3, p. 53; Grieneisen, L, Muehlbauer, AL, Blekhman, R., Microbial control of host gene regulation and the evolution of host-microbiome interactions in primates (2020) Philos. Trans. R. Soc. Lond. B, 375 (1808), p. 20190598; Hicks, AL, Lee, KJ, Couto-Rodriguez, M, Patel, J, Sinha, R, Gut microbiomes of wild great apes fluctuate seasonally in response to diet (2018) Nat. Commun, 9, p. 1786; Ren, T, Grieneisen, LE, Alberts, SC, Archie, EA, Wu, M., Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons (2016) Environ.Microbiol, 18 (5), pp. 1312-1325; Moeller, AH, Peeters, M, Ndjango, J-B, Li, Y, Hahn, BH, Ochman, H., Sympatric chimpanzees and gorillas harbor convergent gut microbial communities (2013) Genome Res, 23 (10), pp. 1715-1720; Ochman, H, Worobey, M, Kuo, C-H, Ndjango, J-BN, Peeters, M, Evolutionary relationships of wild hominids recapitulated by gut microbial communities (2010) PLOS Biol, 8 (11), p. e1000546; Reshef, L, Koren, O, Loya, Y, Zilber-Rosenberg, I, Rosenberg, E., The coral probiotic hypothesis (2006) Environ.Microbiol, 8 (12), pp. 2068-2073; Teplitski, M, Ritchie, K., How feasible is the biological control of coral diseases? (2009) Trends Ecol. Evol, 24 (7), pp. 378-385; Voolstra, CR, Ziegler, M., Adapting with microbial help: Microbiome flexibility facilitates rapid responses to environmental change (2020) Bioessays, 42 (7), p. e2000004; Brodnicke, OB, Bourne, DG, Heron, SF, Pears, RJ, Stella, JS, Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event (2019) Coral Reefs, 38 (4), pp. 591-603; Nielsen, DA, Petrou, K, Gates, RD., Coral bleaching from a single cell perspective (2018) ISME J, 12 (6), pp. 1558-1567; Hughes, TP, Kerry, JT, Baird, AH, Connolly, SR, Dietzel, A, Global warming transforms coral reef assemblages (2018) Nature, 556 (7702), pp. 492-496; Ben-Haim, Y, Zicherman-Keren, M, Rosenberg, E., Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus (2003) Appl. Environ. Microbiol, 69 (7), pp. 4236-4242; Rosales, SM, Clark, AS, Huebner, LK, Ruzicka, RR, Muller, EM., Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission (2020) Front. Microbiol, 11, p. 681; Aeby, GS, Ushijima, B, Campbell, JE, Jones, S, Williams, GJ, Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract (2019) Front. Mar. Sci, 6, p. 189; Skerratt, LF, Berger, L, Speare, R, Cashins, S, McDonald, KR, Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs (2007) EcoHealth, 4, p. 125; Schmidt, BR, Bozzuto, C, Lötters, S, Steinfartz, S., Dynamics of host populations affected by the emerging fungal pathogen (2017) R. Soc. Open Sci, 4 (3), p. 160801; Franklinos, LHV, Lorch, JM, Bohuski, E, Rodriguez-Ramos Fernandez, J, Wright, ON, Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes (2017) Sci. Rep, 7, p. 3844; Drees, KP, Lorch, JM, Puechmaille, SJ, Parise, KL, Wibbelt, G, Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome (2017) mBio, 8 (6), pp. e01941-17; Blehert, DS, Hicks, AC, Behr, M, Meteyer, CU, Berlowski-Zier, BM, Bat white-nose syndrome: An emerging fungal pathogen? (2009) Science, 323 (5911), p. 227; Frick, WF, Puechmaille, SJ, Hoyt, JR, Nickel, BA, Langwig, KE, Disease alters macroecological patterns of North American bats (2015) Glob. Ecol. Biogeogr, 24 (7), pp. 741-749; McKenzie, VJ, Song, SJ, Delsuc, F, Prest, TL, Oliverio, AM, The effects of captivity on the mammalian gut microbiome (2017) Integr. Comp. Biol, 57 (4), pp. 690-704; Dennis, P, Ellis, S, Mellen, J, Lee, P, Olea-Popelka, F, IOD in rhinos?epidemiology group report: report from the EpidemiologyWorkingGroup of the InternationalWorkshop on Iron Overload Disorder in Browsing Rhinoceros (February 2011) (2012) J. Zoo Wildl.Med, 43, pp. S114-S116. , (Suppl.v3); Roth, TL, Switzer, A, Watanabe-Chailland, M, Bik, EM, Relman, DA, Reduced gutmicrobiome diversity and metabolome differences in rhinoceros species at risk for iron overload disorder (2019) Front. Microbiol, 10, p. 2291; LeiteDCA, Leão P, Garrido, AG, Lins, U, Santos, HF, Broadcast spawning coral can vertically transfer its associated bacterial core (2017) Front. Microbiol, 8, p. 176; Zheng, H, Steele, MI, Leonard, SP, Motta, EVS, Moran, NA., Honey bees as models for gut microbiota research (2018) Lab. Anim, 47 (11), pp. 317-325; Rosado, PM, Leite, DCA, Duarte, GAS, Chaloub, RM, Jospin, G, Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation (2019) ISME J, 13 (4), pp. 921-936; Hoyt, JR, Langwig, KE, White, JP, Kaarakka, HM, Redell, JA, Field trial of a probiotic bacteria to protect bats from white-nose syndrome (2019) Sci. Rep, 9, p. 9158; Mimee, M, Citorik, RJ, Lu, TK., Microbiome therapeutics?advances and challenges (2016) Adv. Drug Deliv. Rev, 105, pp. 44-54; Banerjee, G, Ray, AK., The advancement of probiotics research and its application in fish farming industries (2017) Res. Vet. Sci, 115, pp. 66-77; Holden, WM, Hanlon, SM, Woodhams, DC, Chappell, TM, Wells, HL, Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana sphenocephala) against the frogkilling fungus, Batrachochytrium dendrobatidis (2015) Biol. Conserv, 187, pp. 91-102; Peixoto, RS, Sweet, M, Bourne, DG., Customized medicine for corals (2019) Front. Mar. Sci, 6, p. 686; Zmora, N, Zilberman-Schapira, G, Suez, J, Mor, U, Dori-Bachash, M, Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host andmicrobiome features (2018) Cell, 174 (6), pp. 1388-1405. , e21; Kashyap, PC, Chia, N, Nelson, H, Segal, E, Elinav, E., Microbiome at the frontier of personalized medicine (2017) Mayo Clin. Proc, 92 (12), pp. 1855-1864; Gilbert, JA, Stephens, B., Microbiology of the built environment (2018) Nat. Rev.Microbiol, 16 (11), pp. 661-670; Peters, RD, Sturz, AV, Carter, MR, Sanderson, JB., Developing disease-suppressive soils through crop rotation and tillage management practices (2003) Soil Tillage Res, 72 (2), pp. 181-192; Hong, S, Jv, H, Lu, M, Wang, B, Zhao, Y, Ruan, Y., Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation (2020) Eur. J. Soil Biol, 97, p. 103154; van Elsas, JD, Garbeva, P, Salles, J., Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens (2002) Biodegradation, 13, pp. 29-40; Berg, G, Köberl, M, Rybakova, D, Möller, H, Grosch, R, Smalla, K., Plant microbial diversity is suggested as the key to future biocontrol and health trends (2017) FEMS Microbiol. Ecol, 93 (5). , https://doi.org/10.1093/femsec/fix050; Yang, Y, Ashworth, AJ, DeBruyn, JM, Willett, C, Durso, LM, Soil bacterial biodiversity is driven by long-Term pasture management, poultry litter, and cattle manure inputs (2019) PeerJ, 7, p. e7839; de Faccio Carvalho, PC, Anghinoni, I, de Moraes, A, de Souza, ED, Sulc, RM, Managing grazing animals to achieve nutrient cycling and soil improvement in no-Till integrated systems (2010) Nutr. Cycl. Agroecosyst, 88 (2), pp. 259-273

Keywords

  • animal
  • companion
  • domestic
  • food production
  • host microbiome interactions
  • impacts
  • metagenome
  • microbiome
  • omics
  • wild
  • animal behavior
  • Anthozoa
  • biodiversity
  • domestic animal
  • human
  • microflora
  • sea food
  • veterinary medicine
  • virology
  • wild animal
  • Animals
  • Animals, Domestic
  • Animals, Wild
  • Behavior, Animal
  • Biodiversity
  • COVID-19
  • Human-Animal Interaction
  • Humans
  • Microbiota
  • SARS-CoV-2
  • Seafood

ASJC Scopus subject areas

  • Biotechnology
  • Animal Science and Zoology
  • Genetics
  • General Veterinary

Fingerprint

Dive into the research topics of 'Advances in Microbiome Research for Animal Health: Annual Review of Animal Biosciences'. Together they form a unique fingerprint.

Cite this