Abstract
Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $\$$/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant. © 2012 Elsevier B.V.
Original language | English (US) |
---|---|
Pages (from-to) | 161-179 |
Number of pages | 19 |
Journal | Desalination |
Volume | 308 |
DOIs | |
State | Published - Jan 2013 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The authors thank the National University of Singapore, National Research Foundation (Singapore), King Abdullah University of Science and Technology (KAUST-Special Academic Programme phase 1 and phase 2) and grant (No. R33-2009-000-101660) from the World Class University (WCU) Project of the National Research Foundation for their generous support and funds in conducting the pilot scale experiments.
ASJC Scopus subject areas
- Water Science and Technology
- General Materials Science
- General Chemical Engineering
- General Chemistry
- Mechanical Engineering