Abstract
The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.
Original language | English (US) |
---|---|
Pages (from-to) | B359-B375 |
Number of pages | 1 |
Journal | SIAM Journal on Scientific Computing |
Volume | 35 |
Issue number | 2 |
DOIs | |
State | Published - Mar 12 2013 |