Abstract
Perovskite semiconductor materials attracted tremendous interest in heterogeneous photocatalysis. However, most of these semiconductors have limited charge mobility and poor charge separation. Using a flux-assisted technique, we synthesized high symmetry anisotropic facets (18-facet Sr2CoTaO6) double perovskite oxide semiconductor. Surface doping of sulfur (S) and carbon (C) into the lattice of a particulate novel Sr2CoTaO6 induced microstrain to enhance the photocatalytic conversion of CO2 by boosting charge density to tune charge-carrier mobility. The S and C incorporation boosted the photocatalytic CO2 reduction more than eleven orders of magnitude higher than pristine Sr2CoTaO6 under visible light irradiation. Such efficient photocatalytic CO2 reduction is attributed to the synergistic effect of tuning the carriers mobility and spatial charge separation via chemical and electronic engineering of the particulate (S, C)-codoped Sr2CoTaO6. The concept of fabrication of spatial charge separation and engineering electron mobility will explore a new avenue to design an efficient photocatalytic system for the conversion of solar energy to solar fuels.
Original language | English (US) |
---|---|
Journal | Chemical Engineering Journal |
Volume | 446 |
DOIs | |
State | Published - Oct 15 2022 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-21ASJC Scopus subject areas
- Environmental Chemistry
- General Chemical Engineering
- General Chemistry
- Industrial and Manufacturing Engineering