Abstract
The addition of Zr metal particles to MoCx/ZSM-5 in interpellet mixtures (2:1 weight ratio) resulted in maximum single-pass methane conversion of ~27% for dehydroaromatization at 973 K - in significant excess of the equilibrium prescribed ~10% conversion at these conditions - and a concurrent 1.4 - 5.6 fold increase in aromatic product yields due to circumvention of thermodynamic equilibrium limitations by absorptive hydrogen removal by Zr while retaining the cumulative aromatic product selectivity. The absorptive function of the polyfunctional catalyst formulation can be regenerated by thermal treatment in helium flow at 973 K yielding above equilibrium methane conversion in successive regeneration cycles. Hydrogen uptake experiments demonstrate formation of bulk ZrH₁.₇₅ on hydrogen absorption by zirconium at 973 K. Cooperation between absorption and catalytic centers distinct in location and function enables circumvention of persistent thermodynamic challenges in non-oxidative methane dehydrogenation.
Original language | English (US) |
---|---|
Pages (from-to) | 15577-15582 |
Number of pages | 6 |
Journal | Angewandte Chemie International Edition |
Volume | 57 |
Issue number | 47 |
DOIs | |
State | Published - Oct 30 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): OSR Ref. 3325
Acknowledgements: We acknowledge financial support from KAUST (OSR Ref. 3325) and Office of Basic Energy Sciences, U.S. Department of Energy (Award DE-SC0019028) and thank Dr. Seema Thakral for XRD measurements as part of Characterization Facility, University of Minnesota, which receives partial support from NSF through MRSEC program.