Abstract
Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1a and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover decrease in WRN and heterochromatin marks are detected in MSCs from older individuals Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
Original language | English (US) |
---|---|
Pages (from-to) | 1160-1163 |
Number of pages | 4 |
Journal | SCIENCE |
Volume | 348 |
Issue number | 6239 |
DOIs | |
State | Published - Jun 5 2015 |
ASJC Scopus subject areas
- General