Abstract
Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.
Original language | English (US) |
---|---|
Pages (from-to) | 873-886 |
Number of pages | 14 |
Journal | IEEE Transactions on Information Theory |
Volume | 61 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported by the Ministry of Science and Technology, Taiwan, under Grants NSC 102-2221-E-001-006-MY2, MOST 103-3113-E-110-002, and NSC 101-2221-E-011-069-MY3. Part of this work was presented at the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2013).
ASJC Scopus subject areas
- Library and Information Sciences
- Information Systems
- Computer Science Applications