Abstract
In this paper, we propose a Smoothing, Lifting and Thresholding (SLaT) method with three stages for multiphase segmentation of color images corrupted by different degradations: noise, information loss and blur. At the first stage, a convex variant of the Mumford–Shah model is applied to each channel to obtain a smooth image. We show that the model has unique solution under different degradations. In order to properly handle the color information, the second stage is dimension lifting where we consider a new vector-valued image composed of the restored image and its transform in a secondary color space to provide additional information. This ensures that even if the first color space has highly correlated channels, we can still have enough information to give good segmentation results. In the last stage, we apply multichannel thresholding to the combined vector-valued image to find the segmentation. The number of phases is only required in the last stage, so users can modify it without the need of solving the previous stages again. Experiments demonstrate that our SLaT method gives excellent results in terms of segmentation quality and CPU time in comparison with other state-of-the-art segmentation methods.
Original language | English (US) |
---|---|
Pages (from-to) | 1313-1332 |
Number of pages | 20 |
Journal | Journal of Scientific Computing |
Volume | 72 |
Issue number | 3 |
DOIs | |
State | Published - Mar 10 2017 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2022-06-03Acknowledged KAUST grant number(s): KUK-I1-007-43
Acknowledgements: The authors thank G. Steidl and M. Bertalmio for constructive discussions. The work of X. Cai is partially supported by Welcome Trust, Issac Newton Trust, and KAUST Award No. KUK-I1-007-43. The work of R. Chan is partially supported by HKRGC GRF Grant No. CUHK300614, CUHK14306316, CRF Grant No. CUHK2/CRF/11G, CRF Grant C1007-15G, and AoE Grant AoE/M-05/12 The work of M. Nikolova is partially supported by HKRGC GRF Grant No. CUHK300614, and by the French Research Agency (ANR) under Grant No. ANR-14-CE27-001 (MIRIAM). The work of T. Zeng is partially supported by NSFC 11271049, 11671002, RGC 211911, 12302714 and RFGs of HKBU.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Theoretical Computer Science
- Software
- General Engineering