A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

Furrukh Sana, Fabio Ravanelli, Tareq Y. Al-Naffouri, Ibrahim Hoteit

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.
Original languageEnglish (US)
Pages (from-to)2242-2254
Number of pages13
JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volume9
Issue number6
DOIs
StatePublished - Jun 2 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRG_R2_13_ALOU_KAUST_2
Acknowledgements: This work was supported in part by a
CRG2 grant CRG_R2_13_ALOU_KAUST_2 from the Office of Competitive
Research at the King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia.

Fingerprint

Dive into the research topics of 'A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements'. Together they form a unique fingerprint.

Cite this