A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

David Kiefer, Liyang Yu, Erik Fransson, Andrés Gómez, Daniel Primetzhofer, Aram Amassian, Mariano Campoy-Quiles, Christian Müller

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.
Original languageEnglish (US)
Pages (from-to)1600203
JournalAdvanced Science
Issue number1
StatePublished - Sep 30 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Financial support from the Swedish Research Council Formas, the Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellowship, the Foundation of Strategic Research (SSF) through a research infrastructure fellowship and the European Research Council (ERC) under grant agreements no. 637624 and 648901 is gratefully acknowledged. The authors thank Jason Ryan and Anders Mårtensson (Chalmers) for help with thermal conductivity and SEC measurements, Dr. Duc T. Duong (Stanford University) for advice on doping efficiency calculations and CHESS (supported by the NSF & NIH/NIGMS via NSF award DMR-1332208) for providing experimental time for GIWAXS measurements. M.C.Q. and A.G. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496) and project CSD2010–00044 (Consolider NANOTHERM).


Dive into the research topics of 'A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics'. Together they form a unique fingerprint.

Cite this