A Self-standing Organic Supercapacitor to Power Bioelectronic Devices

Georgios Nikiforidis, Shofarul Wustoni, David ohayon, Victor Druet, Sahika Inal

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


The last decade has witnessed rapid progress in the development of implantable and wearable bio(chemical) sensors, which allow for real-time, continuous health monitoring. Among different device configurations, organic electrochemical transistors (OECTs) have shown great potential in transducing weak biological signals with on-site amplification and as components of complex circuits with low power requirements. Yet, a significant technological challenge remains in the way these devices are integrated with power sources that are conventionally bulky and rigid. Here, we present a simple process to assemble a supercapacitor (SC) that is self-standing, lightweight, and biocompatible and made of two identical conducting polymer (poly(3,4-ethylenedioxythiophene) electrodes and an agarose hydrogel comprising alkali metal halides. This SC is distinguished by its high energy and power density (20 Wh kg-1 and 105 W kg-1, respectively), moderate gravimetric specific capacitance (70 F g-1), excellent stability (charge retention of 75% after 12,000 cycles), operational flexibility (can accommodate various types of aqueous electrolytes), long-lasting self-discharge (>10 h), and fast response time (between 0.1 and 30 s). We use the SC to power a micron-scale OECT, which selectively detects sodium ions in aqueous media. When miniaturized, the SC maintains its high performance and delivers a volumetric capacitance of 240 F cm-3, highlighting the possibility of fabrication in nonstandard form factors to couple with various bioelectronic devices. This low-cost and portable power source instigates the development of robust and biocompatible onboard power sources to be implemented alongside biosensors.
Original languageEnglish (US)
Pages (from-to)7896-7907
Number of pages12
JournalACS Applied Energy Materials
Issue number8
StatePublished - Jul 27 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2015-Sensors-2719
Acknowledgements: G.N. and S.I. thank the support by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-Sensors-2719. Scheme 1, Figure 2a, and the TOC image were created by Heno Hwang, scientific illustrator at KAUST. The authors thank Dr. Craig Combe and Prof. Iain McCulloch (KAUST Solar Center) for the synthesis of the ion-selective EDOT monomer.


Dive into the research topics of 'A Self-standing Organic Supercapacitor to Power Bioelectronic Devices'. Together they form a unique fingerprint.

Cite this