Abstract
We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
Original language | English (US) |
---|---|
Journal | Scientific Reports |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Dec 21 2016 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The financial support by the Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development as well as the Austrian Science Fund (FWF) under grant W1245 and F4112 SFB ViCoM, the Vienna Science and Technology Fund (WWTF) under grant MA14-44, the innovative projects initiative of TU Wien is gratefully acknowledged. A.M. acknowledges financial support from the King Abdullah University of Science and Technology (KAUST).