Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Original language | English (US) |
---|---|
Pages (from-to) | 140-154.e7 |
Number of pages | 1539999861 |
Journal | Molecular Cell |
Volume | 79 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2020 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2021-03-11Acknowledged KAUST grant number(s): OSR-2015-CRG4-2644
Acknowledgements: We are indebted to Karl Duderstadt and Christiaan Punter for ImageJ plugins, Yao Wang for providing protein reagents, Lisanne Spenkelink for development of and assistance with the sm-FRAP assays, and Harshad Ghodke for fruitful discussions. This work was supported by the Australian Research Council (grants DP150100956 and DP180100858 to A.M.v.O. and N.E.D. and Australian Laureate Fellowship FL140100027 to A.M.v.O.), King Abdullah University of Science and Technology, Saudi Arabia (grant OSR-2015-CRG4-2644 to N.E.D. and A.M.v.O), Nederlandse Organisatie voor Wetenschappelijk Onderzoek (grant 12CMCE03 to E.M.), and the National Institutes of Health (NIGMS grant R37-071747 to J.M.B.). Conceptualization, E.M. S.J. N.E.D. and A.M.v.O.; Methodology, E.M. S.J. J.S.L. N.E.D. and A.M.v.O.; Resources, E.M. S.J. J.S.L. Z.-Q.X. A.T.Y.L. and V.L.O.; Software, E.M.; Validation, Formal Analysis, & Writing – Original Draft, E.M. and S.J.; Investigation, E.M. S.J. and J.S.L.; Supervision, S.J. N.E.D. and A.M.v.O.; Writing – Review & Editing, E.M. S.J. J.M.B. N.E.D. and A.M.v.O.; Funding Acquisition, J.M.B. N.E.D. and A.M.v.O. The authors declare no competing interests.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
ASJC Scopus subject areas
- Cell Biology
- Molecular Biology