A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

Pierre-David Létourneau, Ying Wu, George Papanicolaou, Josselin Garnier, Eric Darve

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.
Original languageEnglish (US)
Pages (from-to)113-134
Number of pages22
JournalWave Motion
Volume70
DOIs
StatePublished - Sep 19 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media'. Together they form a unique fingerprint.

Cite this