Abstract
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.
Original language | English (US) |
---|---|
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Journal of Computational Physics |
Volume | 268 |
DOIs | |
State | Published - Jul 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): SA-C0040/UK-C0016
Acknowledgements: This publication was based on work supported in part by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST), the Hong Kong RGC-GRF Grants 605311 and 605513. The work is also supported by the project entitled "The Modeling and Simulation of Two-Phase Flow in Porous Media: From Pore Scale to Darcy Scale" funded by KAUST's GRP-CF (Global Research Partnership Collaborative Fellows) Program.
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
- Computer Science Applications