A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity

Fanny Caputo, Marta Mameli, Andrzej Sienkiewicz, Silvia Licoccia, Francesco Stellacci, Lina Ghibelli, Enrico Traversa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

90 Scopus citations


Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Herein we present a simple direct precipitation approach, exploiting ethylene glycol as synthesis co-factor, to synthesize at room temperature nanocrystalline sub-10 nm CNPs, followed by a surface silanization approach to improve nanoparticle dispersibility in biological fluids. CNPs were characterized using transmission electron microscopy (TEM) observations, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. CNP redox activity was studied in abiotic systems using electron spin resonance (ESR) measurements, and in vitro on human cell models. In-situ silanization improved CNP colloidal stability, in comparison with non-functionalized particles, and allowed at the same time improving their original biological activity, yielding thus functionalized CNPs suitable for biomedical applications.

Original languageEnglish (US)
Article number4636
JournalScientific Reports
Issue number1
StatePublished - Dec 1 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

ASJC Scopus subject areas

  • General


Dive into the research topics of 'A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity'. Together they form a unique fingerprint.

Cite this