A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches

Jung Gil Lee, Woo-Seung Kim, June-Seok Choi, NorEddine Ghaffour, Young-Deuk Kim

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m2 at each stage is found to be 21.5 kg.
Original languageEnglish (US)
Pages (from-to)47-56
Number of pages10
JournalWater Research
StatePublished - Oct 24 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this paper was supported by a grant (code 13IFIP-B065893-03) from the Industrial Facilities & Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean Government.


Dive into the research topics of 'A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches'. Together they form a unique fingerprint.

Cite this