A Novel Low-Temperature Thermal Desalination Technology Using Direct-Contact Spray Method

Qian Chen, Muhammad Burhan, Muhammad Wakil Shahzard, Raid Naif Alrowais, Doskhan Ybyraiymkul, Faheem Akhtar, Yong Li, Kim Choon Ng

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Due to the emerging water crisis, the global desalination capacity has been expanding exponentially in the past few decades, leading to substantial amount of primary energy consumption. Therefore, the exploration of energy-efficient desalination processes and alternative energy sources has been the subject of great research interests. The spray-assisted low-temperature desalination (SLTD) system is a novel method for desalination that enables efficient renewable energy utilization. It works on the direct-contact spray evaporation/condensation mechanism and uses only hollow chambers. The merits include enhanced heat and mass transfer, lower initial and operational costs, and reduced scaling and fouling issues. This chapter presents a study on the SLTD system driven by sensible heat sources. The working principle of the system will be introduced first. Then a thermodynamic analysis will be presented to obtain the freshwater productivity under different design and operational conditions. Additionally, the energy utilization level will be quantified to highlight the energy wastage when operating with sensible heat sources. Afterward, the system configuration will be modified to maximize the utilization of sensible heat sources and promote productivity. Finally economic viability of the modified design will be evaluated.
Original languageEnglish (US)
Title of host publicationDesalination - Challenges and Opportunities [Working Title]
PublisherIntechOpen
DOIs
StatePublished - May 28 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors gratefully acknowledge the generous funding from the (1) Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST); (2) the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program; and (3) the China Scholarship Council (CSC).

Fingerprint

Dive into the research topics of 'A Novel Low-Temperature Thermal Desalination Technology Using Direct-Contact Spray Method'. Together they form a unique fingerprint.

Cite this