A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

Peigang Deng, Yi-Kuen Lee, Tong Yi Zhang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane's edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.
Original languageEnglish (US)
Pages (from-to)445401
JournalJournal of Physics D: Applied Physics
Volume47
Issue number44
DOIs
StatePublished - Oct 15 2014
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported by a Hubei Natural Science Foundation grant (2012FFB04701), partially supported by Wuhan Science and Technology Bureau grant (2013010501 010145) and by Hong Kong RGC GRF Grant (16205314).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'A nonlinear electromechanical coupling model for electropore expansion in cell electroporation'. Together they form a unique fingerprint.

Cite this