Abstract
In this paper a new Region Of Interest (ROI) characterization for image denoising performance evaluation is proposed. This technique consists of balancing the contrast between the dark and bright ROIs, in Magnetic Resonance (MR) images, to track the noise removal. It achieves an optimal compromise between removal of noise and preservation of image details. The ROI technique has been tested using synthetic MRI images from the BrainWeb database. Moreover, it has been applied to a recently developed denoising method called Semi-Classical Signal Analysis (SCSA). The SCSA decomposes the image into the squared eigenfunctions of the Schrödinger operator where a soft threshold h is used to remove the noise. The results obtained using real MRI data suggest that this method is suitable for real medical image processing evaluation where the noise-free image is not available.
Original language | English (US) |
---|---|
Title of host publication | 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 5579-5582 |
Number of pages | 4 |
ISBN (Print) | 9781538636466 |
DOIs | |
State | Published - Nov 16 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Research reported in this publication was supported by King Abdullah University of Science and Technology.