Abstract
The recently introduced family of natural evolution strategies (NES), a novel stochastic descent method employing the natural gradient, is providing a more principled alternative to the well-known covariance matrix adaptation evolution strategy (CMA-ES). Until now, NES could only be used for single-objective optimization. This paper extends the approach to the multi-objective case, by first deriving a (1 + 1) hillclimber version of NES which is then used as the core component of a multi-objective optimization algorithm. We empirically evaluate the approach on a battery of benchmark functions and find it to be competitive with the state-of-the-art. © 2010 Springer-Verlag.
Original language | English (US) |
---|---|
Title of host publication | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Pages | 627-636 |
Number of pages | 10 |
DOIs | |
State | Published - Nov 12 2010 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2022-09-14ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science