A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells

Akmaral Seitkhan, Marios Neophytou, Rawad Hallani, Joel Troughton, Nicola Gasparini, Hendrik Faber, Edy Abou-Hamad, Mohamed N. Hedhili, George T. Harrison, Derya Baran, Leonidas Tsetseris, Thomas D. Anthopoulos, Iain McCulloch

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Power conversion efficiencies of perovskite solar cells (PSCs) have rapidly increased from 3.8% to a certified 25.2% within only a decade. Eliminating possible recombination losses at the interfaces is essential to further improve both efficiency and stability of this class of emerging photovoltaic technology. Herein, a simple approach for improving the electron extraction of the PC60BM electron transport layer (ETL) is presented by sequentially depositing Al:ZnO (AZO) and triphenyl-phosphine oxide (TPPO) on top of it, in a p–i–n device configuration. The efficiency of the resulting CH3NH3PbI3-based solar cell is shown to improve from 14.6%, measured for the control PC60BM-only cell, to 17.9% for double-ETL (PC60BM/AZO) and 19.2% for triple-ETL (PC60BM/AZO/TPPO)-based devices, respectively. Optimized triple-ETL-based cells exhibit high fill factor of 82%. The combination of electrical and quantum mechanical calculations shows that efficiency improvement is attributed to reduced trap-assisted recombination at the interface and better energy level alignment due to chemical interactions between PC60BM, AZO, and TPPO. Moreover, it is shown that the use of multilayer ETL results in better device stability (T80 ≈ 800 h) under constant illumination. This work opens new possibilities for inexpensive highly efficient and stable multilayered contacts for PSCs by combining organic small molecules and metal oxides.
Original languageEnglish (US)
Pages (from-to)2004273
JournalAdvanced Functional Materials
StatePublished - Sep 4 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2018-CARF/CCF-3079, OSR-2015-CRG4-2572, OSR-4106 CPF2019, OSR-2019-CARF/CCF-3079
Acknowledgements: A.S and M.N. contributed equally to this work. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology, Office of Sponsored Research (OSR) under awards nos. OSR-2018-CARF/CCF-3079, OSR-2015-CRG4-2572, OSR-4106 CPF2019, and OSR-2019-CARF/CCF-3079. The authors acknowledge EC FP7 Project SC2 (610115), EC H2020 (643791), and EPSRC Projects EP/G037515/1, EP/M005143/1, and EP/L016702/1. L.T. acknowledges computational time granted from GRNET in the National HPC facility—ARIS—under project FRAME.


Dive into the research topics of 'A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this