A multi-cylinder HCCI engine model for control

Jason S. Souder*, Parag Mehresh, J. Karl Hedrick, Robert Dibble

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

21 Scopus citations


Homogeneous charge compression ignition (HCCI) engines are a promising engine technology due to their low emissions and high efficiencies. Controlling the combustion timing is one of the significant challenges to practical HCCI engine implementations. In a spark-ignited engine, the combustion timing is controlled by the spark timing. In a Diesel engine, the timing of the direct fuel injection controls the combustion timing. HCCI engines lack such direct in-cylinder mechanisms. Many actuation methods for affecting the combustion timing have been proposed. These include intake air heating, variable valve timing, variable compression ratios, and exhaust throttling. On a multi-cylinder engine, the combustion timing may have to be adjusted on each cylinder independently. However, the cylinders are coupled through the intake and exhaust manifolds. For some of the proposed actuation methods, affecting the combustion timing on one cylinder influences the combustion timing of the other cylinders. In order to implement one of these actuation methods on a multi-cylinder engine, the engine controller must account for the cylinder-to-cylinder coupling effects. A multi-cylinder HCCI engine model for use in the control design process is presented. The model is comprehensive enough to capture the cylinder-to-cylinder coupling effects, yet simple enough for the rapid simulations required by the control design process. Although the model could be used for controller synthesis, the model is most useful as a starting point for generating a reduced-order model, or as a plant model for evaluating potential controllers. Specifically, the model includes the dynamics for affecting the combustion timing through exhaust throttling. The model is readily applicable to many of the other actuation methods, such as variable valve timing. Experimental results validating the model are also presented.

Original languageEnglish (US)
Number of pages10
StatePublished - Jan 1 2004
Event2004 ASME International Mechanical Engineering Congress and Exposition, IMECE - Anaheim, CA, United States
Duration: Nov 13 2004Nov 19 2004


Other2004 ASME International Mechanical Engineering Congress and Exposition, IMECE
Country/TerritoryUnited States
CityAnaheim, CA

ASJC Scopus subject areas

  • Mechanical Engineering
  • Software


Dive into the research topics of 'A multi-cylinder HCCI engine model for control'. Together they form a unique fingerprint.

Cite this