A mid-infrared diagnostic for benzene using a tunable difference-frequency-generation laser

Mohammad Khaled Shakfa, Mhanna Mhanna, Hanfeng Jin, Dapeng Liu, Khalil Djebbi, Marco Marangoni, Aamir Farooq

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Benzene is a very important molecule in a variety of industrial, environmental, and chemical systems. In combustion, benzene plays an essential role in the formation and growth of polycyclic aromatic hydrocarbons and soot. In this work, a new laser-based diagnostic is presented to make quantitative, interference-free, and sensitive measurements of benzene in the mid-infrared (MIR) region. The diagnostic is based on a widely tunable difference-frequency-generation (DFG) laser system. We developed this laser source to emit in the MIR between 666.54 cm-1 and 790.76 cm-1 as a result of the DFG process between an external-cavity quantum-cascade-laser and a CO2 gas laser in a nonlinear, orientation-patterned GaAs crystal. Benzene measurements were carried out at the peak (673.94 cm-1) of the Q-branch of the v11 vibrational band of benzene. The absorption cross-section of benzene was measured over a range of pressures (4.44 mbar to 1.158 bar) at room temperature. The temperature dependence of the absorption cross-section was studied behind reflected shock waves over 553-1473 K. The diagnostic was demonstrated in a high-temperature reactive experiment of benzene formation from propargyl radicals. The new diagnostic will prove highly beneficial for high-temperature studies of benzene formation and consumption kinetics.
Original languageEnglish (US)
JournalProceedings of the Combustion Institute
DOIs
StatePublished - Sep 16 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-04
Acknowledgements: Research reported in this publication was funded by the Office of Sponsored Research and King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'A mid-infrared diagnostic for benzene using a tunable difference-frequency-generation laser'. Together they form a unique fingerprint.

Cite this