A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

Jia Liu, Fang Zhang, Weihua He, Wulin Yang, Yujie Feng, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems. © 2014 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)530-533
Number of pages4
JournalJournal of Power Sources
StatePublished - Dec 2014
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production'. Together they form a unique fingerprint.

Cite this