A Markov-Switching Model Approach to Heart Sound Segmentation and Classification

Fuad Mohammed Noman, Sh-Hussain Salleh, Chee-Ming Ting, S. Balqis Samdin, Hernando Ombao, Hadri Hussain

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs) which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features. Methods: We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state. To enhance robustness, we extend the MSAR model to a switching linear dynamic system (SLDS) that jointly model both the switching AR dynamics of underlying heart sound signals and the noise effects. We introduce a novel algorithm via fusion of switching Kalman filter and the duration-dependent Viterbi algorithm, which incorporates the duration of heart sound states to improve state decoding. Results: Evaluated on Physionet/CinC Challenge 2016 dataset, the proposed MSAR-SLDS approach significantly outperforms the hidden semi-Markov model (HSMM) in heart sound segmentation based on raw signals and comparable to a feature-based HSMM. The segmented labels were then used to train Gaussian-mixture HMM classifier for identification of abnormal beats, achieving high average precision of 86.1% on the same dataset including very noisy recordings. Conclusion: The proposed approach shows noticeable performance in heart sound segmentation and classification on a large noisy dataset. Significance: It is potentially useful in developing automated heart monitoring systems for pre-screening of heart pathologies.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Journal of Biomedical and Health Informatics
Issue number3
StatePublished - 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01


Dive into the research topics of 'A Markov-Switching Model Approach to Heart Sound Segmentation and Classification'. Together they form a unique fingerprint.

Cite this