Abstract
Total variation (TV) models are among the most popular and successful tools in signal processing. However, due to the complex nature of the TV term, it is challenging to efficiently compute a solution for large-scale problems. State-of-the- Art algorithms that are based on the alternating direction method of multipliers (ADMM) often involve solving large-size linear systems. In this paper, we propose a highly scalable parallel algorithm for TV models that is based on a novel decomposition strategy of the problem domain. As a result, the TV models can be decoupled into a set of small and independent subproblems, which admit closed form solutions. This makes our approach particularly suitable for parallel implementation. Our algorithm is guaranteed to converge to its global minimum. With N variables and np processes, the time complexity is O(N/εnp)to reach an e-optimal solution. Extensive experiments demonstrate that our approach outperforms existing state-of-the-art algorithms, especially in dealing with high-resolution, mega- size images.
Original language | English (US) |
---|---|
Title of host publication | 31st International Conference on Machine Learning, ICML 2014 |
Publisher | International Machine Learning Society (IMLS) |
Pages | 1486-1514 |
Number of pages | 29 |
ISBN (Electronic) | 9781634393973 |
State | Published - 2014 |
Event | 31st International Conference on Machine Learning, ICML 2014 - Beijing, China Duration: Jun 21 2014 → Jun 26 2014 |
Publication series
Name | 31st International Conference on Machine Learning, ICML 2014 |
---|---|
Volume | 2 |
Other
Other | 31st International Conference on Machine Learning, ICML 2014 |
---|---|
Country/Territory | China |
City | Beijing |
Period | 06/21/14 → 06/26/14 |
Bibliographical note
Publisher Copyright:Copyright © (2014) by the International Machine Learning Society (IMLS) All rights reserved.
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Networks and Communications
- Software