Abstract
Lithium-sulfur (Li-S) battery is a promising next-generation rechargeable battery with high energy density. Given the outstanding capacities of sulfur (1675 mAh g−1) and lithium metal (3861 mAh g−1), Li-S battery theoretically delivers an ultra-high energy density of 2567 Wh kg−1. However, this energy density cannot be realized due to several factors, particularly the shuttling of polysulfide intermediates between the cathode and anode, which causes serious degradation of capacity and cycling stability of a Li-S battery. In this work, a simple and scalable route was employed to construct a free-standing laser scribed graphene (LSG) interlayer which effectively suppresses the polysulfide shuttling in Li-S batteries. Thus, a high specific capacity (1160 mAhg-1) with excellent cycling stability (80.4% capacity retention after 100 cycles) has been achieved due to the unique structure of hierarchical three-dimensional pores in the free-standing LSG.
Original language | English (US) |
---|---|
Pages (from-to) | 18833-18839 |
Number of pages | 7 |
Journal | ACS Applied Materials & Interfaces |
Volume | 12 |
Issue number | 16 |
DOIs | |
State | Published - Apr 1 2020 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was funded by the King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia. The schematic illustration, in Figure 1 as well as in the Table of Contents Graphic, was implemented by Ebtehal Alzuwaid.